Looking At Field Service Through Google Glass

This post was originally featured in Field Technologies Online.

Why do enterprise customers of capital equipment demand guaranteed uptime? Because the capital equipment is mission critical to these organizations' revenue streams; when the capital equipment isn’t working, the organization is bleeding money and literally dying. Worse, nonfunctional equipment can put peoples' safety at risk (e.g. patient safety in hospitals when diagnostic machines are down). So when mission-critical equipment isn't working, businesses cannot function correctly. Executives quickly (and rightly) grow frustrated and money is burned. In other words, time-to-resolution (TTR) is critical in field service.

Therefore, buyers of capital equipment spend extraordinary amounts of capital to purchase service contracts that ensure maximum uptime. In turn, equipment manufacturers spend extraordinary amounts of capital to satisfy service level agreements (SLAs) to guarantee that uptime. These SLAs are supported by highly trained, specialized support teams who either fly to--or are located near--the customer's capital equipment for one simple reason: if things break, someone needs to be on site fast.

What if they didn't have to be on site? What if the customer could be supported remotely by a centrally located expert? Google Glass and other smart glasses are making this a reality.

Why Glass? Why not mobile?

For mobile, hands-on workers, smartphones and tablets promised a new paradigm in information access, process control, and remote support. To a certain degree, these devices have delivered. From an information perspective, workers equipped with mobile devices are better equipped than ever before. But smartphones and tablets suffer from one critical problem: they obstruct the worker's process. All the functionality in the world is somewhat less helpful to a worker if they're constantly interrupting their work to glance at, tap, and swipe on their tablet. Most notably, using video for remote collaboration is somewhat less useful if the tech must hold a phone in front of their workspace, occupying one hand and obstructing their view.

Glass, then, is the natural solution to this problem. It brings all the capability of the smartphone to the field, without the obstructions. Glass is voice activated, lightweight, and stays out of the field of view. Most importantly of all, the front facing camera means that a Glass-wearer can share their point of view with anyone, while maintaining their focus and the use of their hands. Every pair of hands in the field now has access to the expertise of the entire organization, in real time.

Perhaps more interestingly, this model can be extended directly to the customer. Particular for field service and repair of capital equipment, this has powerful effects: dramatically improved time to resolution, and lower cost to provide the service.

An Example: Diagnostics in Action

Acme corporation manufactures MRIs for use in hospitals. Pines Hospital in Smithville has an MRI from Acme. It runs about 12 hours per day and generates a total revenue for the hospital of $225,000 each day (or $15k/hour). Last Friday at 8:30AM, the MRI broke at Pines Hospital. It took 3 hours and 40 minutes before an Acme service technician could arrive and fix it. During that 3 hours and 45 minutes, Pines hospital lost $15,000 * 3.67 = $55,000.

Why did it take so long to fix the MRI? Because it took three hours for the nearest ACME support representative to make it from his home in Houston to Smithville. Upon arriving, the field service technician opened the back panel on the MRI, reset the device, re-installed the system settings, and ran a few tests to ensure the MRI was correctly connected back to all of the ancillary imaging and scheduling system. The diagnostic and repair process took just 20 minutes.

Enter Glass: The Next Generation of Field Service

Meanwhile, in an alternate universe, Acme had equipped their technicians with Glass.

In this alternate universe, things occurred differently when the MRI went down. Instead of calling on a telephone, the local Pines Hospital radiology technician put on a pair of Glass and initiated a video call. In seconds, the radiology technician was showing the ACME technical representative exactly what he was seeing and hearing as he walked around the MRI. With guidance from the remote Acme technician, the radiology technician fixed the MRI machine in 40 minutes. Although it took the radiology technician twice as long to complete the actual repair, there was no time lost in transport or logistics. In this alternate universe, Pines hospital only lost $15,000 * .67 = $10,000.

In other words, remote service workflows, powered by Glass, drove material savings for Pines hospital! Plus, the shorter overall downtime kept the hospital running smoothly: patients received diagnoses on time, staff went home on time, and schedules weren't pushed out.

From Example To Reality

This alternate universe is becoming reality! Already, industry leaders are adopting Glass to enhance their field service organizations--equipping both technicians and customers. At Pristine, we’re pioneering this reality, building software for Glass to power new field service workflows based on the "Wearable Worker.” Our customers are lowering costs, shortening time to resolution, and bringing ever more positive experiences to their customers. That’s the next generation of field service in action. Drop us a line to learn more.